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ABSTRACT
Bug reports are vital for software maintenance that allow users
to inform developers of the problems encountered while using
software. However, it is difficult for non-technical users to write
clear descriptions about the bug occurrence. Therefore, more and
more users begin to record the screen for reporting bugs as it is
easy to be created and contains detailed procedures triggering the
bug. But it is still tedious and time-consuming for developers to
reproduce the bug due to the length and unclear actions within the
recording. To overcome these issues, we propose GIFdroid, a light-
weight approach to automatically replay the execution trace from
visual bug reports. GIFdroid adopts image processing techniques
to extract the keyframes from the recording, map them to states in
GUI Transitions Graph, and generate the execution trace of those
states to trigger the bug. Our automated experiments and user study
demonstrate its accuracy, efficiency, and usefulness of the approach.

Github Link: https://github.com/sidongfeng/gifdroid
Video Link: https://youtu.be/5GIw1Hdr6CE
Appendix Link: https://sites.google.com/view/gifdroid

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging.
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1 INTRODUCTION
Software maintenance activities are known to be generally expen-
sive and challenging and one of the most important maintenance
tasks is to handle bug reports [9]. A good bug report is detailed
with clear information about what happened and what the user
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expected to happen. It goes on to contain a reproduction step or
stack trace to assist developers in reproducing the bug, and supple-
ment information such as screenshots, error logs, and environments.
However, clear and concise bug reporting takes time, especially for
non-developer or non-tester users who do not have that expertise
and are not willing to spend that much effort. Video-based bug
reports significantly lower the bar for documenting the bug. First, it
is easy to record the screen as there are many tools available, some
of which are even embedded in the operating system by default like
iOS [5] and Android [7]. Second, video recording can include more
detail and context such as configurations, and parameters, hence it
bridges the understanding gap between users and developers.

Despite the pros of the video-based bug report, it still requires
developers to manually check each frame in the video and repeat it
in their environment. According to our empirical study of 13,587
bug recordings from 647 Android apps in our previous study [18],
one video is of 148.29 frames on average with a varied resolution
makes it difficult for developers to replay them in their setting.
Such phenomenon is further exacerbated as 74.2% of recordings
are without touch indicators on the screen, resulting in poor action
navigation. In addition, only 6.8% of video recordings start from
the app launch and most recordings begin 2-7 steps before the bug
occurrence, indicating that developers need to guess steps to the
entry frame of the video by themselves. Therefore, it is necessary to
develop an automated bug replay tool from video-based bug reports
to save developers’ effort in a bug fix.

There are many related works on bug replay but rarely related
to visual bug reports. Some researchers [33] leverage the natural
language processing methods with program analysis to generate
the test cases from the textual descriptions in bug reports. However,
those approaches do not apply to video-based bug reports. There
are many works on visual artifacts including recording, tutorials,
bug reports [12, 13, 16, 32], but they are specifically for usability
and accessibility testing [14, 19, 20, 29, 31]. There are platforms
providing both video recording and replaying functionalities [1, 11]
which also store the low-level program execution information. They
require the framework installation or app instrumentation which is
too heavy for end users. Bernal et al [11] proposed a tool named V2S
which leverages deep learning techniques to detect touch indicator
captured in a video recording, and translate it into a replayable test
script. However, it requires high-resolution recording with touch
indicators, and complete recording from the app launch to the bug
occurrence, which is hard to get in real-world bug reports [18].

We introduce GIFdroid, a light-weight image-processing ap-
proach to automatically replay the general video (GIF) based bug
reports for Android apps. First, we extract keyframes (i.e., fully
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Figure 1: The overview of GIFdroid.

rendered GUIs) of a recording by comparing the similarity of con-
secutive frames. Second, a sequence of located keyframes is then
mapped to the GUI states in the existing UTG (UI Transition Graph)
of the app by calculating image similarity based on pixel and struc-
tural features. Third, given the mapped sequence, we propose a
novel algorithm to not only address the defective mapped sequence,
but also auto-complete the missing trace between app launch to the
entry frame of the video, resulting in an optimal execution trace to
automatically repeat the bug trigger.

To evaluate the effectiveness of our tool, we evaluate our ap-
proach for 61 video recordings from 31 apps. Our approach sig-
nificantly outperforms other baselines and successfully reproduce
82% video recordings. Apart from the accuracy of our tool, we
also evaluate the usefulness of our tool by conducting a user study
on replaying bugs from 10 real-world video recordings in GitHub.
Through the study, we provide the initial evidence of the usefulness
of GIFdroid for bootstrapping bug replay.

This paper makes the following contributions:

• We present the first light-weight image-processing based
approach, GIFdroid, to reproduce bugs for Android apps
directly from the general GIF recordings.

• A comprehensive evaluation including automated experi-
ments and a user study to demonstrate the accuracy, effi-
ciency and usefulness of our approach.

2 OUR FULLY AUTOMATED APPROACH
Given an input bug recording, we propose an automated approach
to localize a sequence of keyframes in the GIF and subsequently
map them to the existing UTG (UI Transition Graph) to extract
the execution trace. The overview of our approach is shown in

Figure 1, which is divided into three main phases: (i) the Keyframe
Location phase, which identifies a sequence of keyframes of an
input visual recording, (ii) the GUI Mapping phase that maps each
located keyframe to the GUIs in UTG, yielding an index sequence,
and (iii) the Execution Trace Generation phase that utilizes the in-
dex sequence to detect an optimal replayable execution trace. A
detailed overflow of our approach which contains examples of elab-
orated diagrams, pseudocode, approaches is shown in our previous
work [18].

2.1 Keyframe Location
Note that GUI rendering takes time, hence many frames in the
visual recording are showing the partial rendering process. The
goal of this phase is to locate keyframes i.e., states in which GUI
are fully rendered in a given visual recording.

Inspired by signal processing, we leverage the image processing
techniques to first build a perceptual similarity score for consecutive
frame comparison based on Y-Diff. Y-Diff is the difference in Y
(luminance) values of two images in the YUV color space. We adopt
the luminance component because people perceive a sequence
of graphics changes as a motion and luminance is a major input
for the human perception of motion. To calculate the Y-Diff for
consecutive frame, we apply the perceptual comparison metric,
SSIM (Structural Similarity Index) [28]. To further make decisions
on whether the frame is a keyframe, we look into the similarity
scores of consecutive frames in the visual recording.We find that the
keyframe tends to be steady state where the consecutive frames are
similar for a relatively long duration. We empirically set threshold
to decide whether two frames are similar, and duration to localize
the keyframe of recording.
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Figure 2: Example of execution trace generated by GIFdroid.

2.2 GUI Mapping
It is easy for developers to get the UI transitions graph (UTG) of their
own app [15, 30], which is widely used to illustrate the transitions
across different GUIs triggered by typical elements such as pop-ups,
text boxes, text view objects, spinners, list items, progress bars,
checkboxes. In this paper, we adopt the Firebase [2] to collect UTG,
a widely-used automated GUI exploration tool developed by Google,
while other tools can also be used.

Once we have the UTG, we infer actions from the recording
by directly mapping the keyframes extracted from the recording
to states/GUIs within the UTG. To achieve this, we first extract
both pixel and structural features of the keyframe and each GUI
screenshot by using SSIM [28] and ORB (Oriented FAST and Rotated
BRIEF) [23]. While SSIM detects the features within pixels and
structures, it still has several fundamental limitations that exist
in visual recordings, e.g., image distortion [26]. To address this,
we further supplement a robust local invariant feature extraction
method, ORB. Based on the features extracted by SSIM and ORB,
we compute a similarity value 𝑆𝑠𝑠𝑖𝑚 and 𝑆𝑜𝑟𝑏 , respectively. We
then determine the similarity 𝑆𝑐𝑜𝑚𝑏 between the keyframe and
states in UTG by combining two feature similarities score: 𝑆𝑐𝑜𝑚𝑏 =

𝑤 × 𝑆𝑜𝑟𝑏 + (1 −𝑤) × 𝑆𝑠𝑠𝑖𝑚 where𝑤 is a weight for 𝑆𝑠𝑠𝑖𝑚 and 𝑆𝑜𝑟𝑏 ,
taking a value between 0 to 1. Smaller𝑤 value weights 𝑆𝑠𝑠𝑖𝑚 more
heavily, and larger value weights 𝑆𝑜𝑟𝑏 more heavily. We empirically
choose 0.5 as the𝑤 value for the best performance.

Based on the combined similarity between the keyframe and
each GUI screenshot, we select the highest score to be the index of
the keyframe. Consequently, a sequence of keyframes is converted
to a sequence of the index in the UTG.

2.3 Execution Trace Generation
After mapping keyframes to the GUIs in the UTG, we need to
go one step further to connect these GUIs/states into a trace to
replay the bug. However, this process is challenging due to two
reasons. First, the extracted keyframe (Section 2.1) and mapped
GUIs (Section 2.2) may not be 100% accurate, resulting in amismatch
of the groundtruth trace. Second, different from the uploaded GIF
which may start the recording anytime, the recovered trace in our
case must begin from the launch of the app.

Therefore, the trace generation algorithm needs to consider both
the wrong extraction/mapping in our previous steps, and the miss-
ing trace between the app launch and first keyframe in the visual

bug report. To overcome these issues, our approach first generates
all candidate sequences in UTG between the app launch to the last
keyframe from GIF by adopting Depth-First Search traversal (DFS),
that takes a path on UTG and starts walking on it and check if it
reaches the destination. To avoid cyclic path, we record all visited
nodes, so that one node cannot be visited twice. By regarding the
extracted keyframes as a sequence, our approach then further ex-
tracts the Longest Common Subsequence (LCS) between it and all
candidate sequences. Once the LCSs are detected, we select the
candidate sequence that has the longest LCS as the execution trace
due to it replays most keyframes (or index nodes) in the visual
recording. Besides, our goal is to help developers reproduce the
bug with the least amount of time/steps. Therefore, we choose the
optimal execution trace with the shortest sequence.

3 TOOL IMPLEMENTATION AND USAGE
GIFdroid was implemented entirely in Python with modularity
to encourage reuse and extension by future developers and re-
searchers. To obtain the efficiency of GIFdroid, we utilized the
robust implementation for each approach, i.e., Open-CV [3] for
ORB and Scikit-Image [6] for SSIM. Time complexity is an impor-
tant metric to measure the efficiency of algorithm. If an algorithm
has to scale, it computes the result within a finite and practical time
bound even for large UTG of 𝑛 vertices and 𝑚 edges. We imple-
mented dynamic programming to reduce the time complexity of
execution trace generation to 𝑂 (𝑛3).

Since GIFdroid is fully automated, our model can automatically
deal with the bug recording immediately once uploaded. Note that
our tool can be finished offline, especially for long recordings which
require much processing time. Figure 2 shows an example of the
output (i.e., execution trace) generated by GIFdroid. It is similar
to “how-to” instruction to guide developers to repeat the actions,
such as action type, where to tap. It can be further proceeded to
generate sendevent commands for fully automating the bug replay.

4 EVALUATION
The goal of our study is to evaluate the performance of our tool
GIFdroid in terms of accuracy, efficiency, and usability. We first
conducted a large-scale experiment for automated evaluating of
our approach consists of three main phases including keyframe
location, GUI mapping, and trace generation. Then, we conducted
a user study to evaluate the usefulness of the generated execution
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trace for replaying visual bug recording into real-world develop-
ment environments. We elaborate more detailed information in our
previous work [18].

4.1 Automated Evaluation
We artificially constructed a dataset as the groundtruth for evaluat-
ing each step within our approach, instead of using the real-world
bug recordings due to two reasons. First, many real-world bug re-
ports have been fixed and the app is also patched, but it is hard to
find the corresponding previous version of the app for reproduction.
Second, the replay of some bug reports (e.g., financial, social apps)
requires much information like authentication/database/hardware
to generate the UTG which are beyond the scope of this study.
Therefore, we manually generated 61 visual recordings from 31
open-source Android apps [11]. They are top-rated on Google Play
covering 14 app categories (e.g., development, productivity, etc.). To
make the artificial recordings as similar as the real-world one, we
generated the visual recordings by different creation tools (32 from
video conversion, 22 from mobile apps, 7 from emulator screen
recording), varied resolutions (27 1920 × 1080, 23 1280 × 800, 11
900×600), diverse length (30-305 frames), and differed playing speed
(7-30 frames per second). We asked two experienced developers to
manually label keyframes from recordings, GUI mapping between
recording and UTG, and real trace in the UTG as the groundtruth
for each phase. To mitigate the potential threat of data labeling,
each human annotator finished the labelling individually and they
discussed the difference until an agreement was reached. Finally,
we obtained 539 reproduction steps as our evaluation dataset.

Keyframe location:We employed three evaluation metrics (i.e.,
precision, recall, F1-score) and set up four state-of-the-art keyframe
extraction methods as the baselines, including ILS-SUMM [24],
Hecate [25], PySceneDetect [4], and Comixify [22]. The perfor-
mance of GIFdroid is much better than that of other baselines, i.e.,
32%, 106%, 14% boost in recall, precision, and F1-score compared
with the best baseline. The issues with these baselines are that
they are designed for general videos which contain more natural
scenes like human, plants, animals etc. However, different from
those videos, our visual bug recordings belong to artificial artifacts
with different rendering processes. Therefore, considering the char-
acteristics of visual bug recordings, our approach can work well in
extracting keyframes.

GUI mapping: We adopted Precision@k and compared it with
10 mature image processing baselines, including pixel level (e.g,
euclidean distance [17], color histogram [27], fingerprint [8]), and
structural level (e.g., SSIM [28], SIFT [21], SURF [10], ORB [23]).
In contrast with baselines, our method outperforms in all metrics,
85.4%, 90.0%, 91.3% for Precision@1, Precision@2, Precision@3
respectively. Our method that combines SSIM and ORB leads to a
substantial improvement (i.e., 9.7% higher) over any single feature,
indicating that they complement each other.

Execution trace generation: We calculated the sequence simi-
larity as the metric and set up one video replay generation method
V2S [11] and an ablation study of GIFdroid without LCS as our
baselines. Our method achieves 89.59% sequence similarity which
is much higher than that of baselines. In addition, adding LCS

can mitigate the errors introduced in the first two steps in our ap-
proach, resulting in a boost of performance from 82.63% to 89.59%.
Although applying LCS takes a bit more runtime (i.e., 13.25 seconds
on average), it does not influence its real-world usage as it can be
automatically run offline. In detail, GIFdroid fully reproduces 82%
(50/61) of the visual recordings, signals a strong replay-ability.

We manually check the instances where our method failed to
reproduce scenarios. Instances where slightly biased are largely due
to inaccuracies in keyframe location (i.e., missing keyframes) and
GUI mapping (i.e., incorrect GUI mapping). Instances that failed
to reproduce are due to the inaccuracies on the last index, as our
method depends on the last index to end the search.

4.2 Usefulness Evaluation
We recruited 8 participants including 6 graduate students (4 Master,
2 Ph.D) and 2 software developers to participate in the experiment.
All students have at least one-year experience in developing An-
droid apps and have worked on at least one Android apps project
as interns in the company. Two software developers are more pro-
fessional and work in a large company (Alibaba) about Android
development. We first gave them an introduction to our study and
also a real example to try. Each participant was then asked to repro-
duce the same set of 10 randomly selected visual bug recordings
from GitHub which were of diverse difficulty ranging from 6 to
11 steps until triggering bugs. The study involved two groups of
four participants: the experimental group 𝑃1, 𝑃2, 𝑃3, 𝑃4 who got
help with the generated execution trace by our tool, and the con-
trol group 𝑃5, 𝑃6, 𝑃7, 𝑃8 who started from scratch. We recorded
the time used to reproduce the visual bug recordings in Android.
Participants had up to 10 minutes for each bug replay.

Although most participants from both experimental and control
groups can successfully finish the bug replay on time, the experi-
ment group reproduced the visual bug recording much faster than
that of the control group (with an average of 171.4 seconds versus
65.0 seconds). In fact, the average time of the control group is un-
derestimated, because three bugs fail to be reproduced within 10
minutes, which means that participants may need more time. In
contrast, all participants in the experiment group finished all the
tasks within 2 minutes.

We summarised two reasons from their feedback why it takes
the control group more time to finish the reproduction than the
experiment group. First, some visual recording is quite complicated
which requires participants in the control group to watch the vi-
sual recordings several times for following procedures. The GUI
transitions within the recording may also be too fast to follow, so
developers have to replay it. Second, it is hard to determine the
trigger from one GUI to the next one. That trial and error makes
the bug replay process tedious and time-consuming. It is especially
severe for junior developers who are not familiar with the app code.

5 CONCLUSION
The visual bug recording is trending in bug reports due to its easy
creation and rich information. To help developers automatically
reproduce those bugs, we propose GIFdroid, an image-processing
approach to covert the recording to executable trace to trigger the
bug in the Android app. Our automated evaluation shows that our
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GIFdroid can accurately reproduce 82% (50/61) visual recordings
from 31 Android apps. The user study on replaying 10 real-world
visual bug recordings confirms the usefulness of our GIFdroid in
boosting developers’ productivity.

In the future, we will take the human factor into the automated
approach consideration, exploring how human collaborate with the
machine for replaying the bugs in the visual bug report.
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