
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/346170544

UIED: a hybrid tool for GUI element detection

Conference Paper · November 2020

DOI: 10.1145/3368089.3417940

CITATIONS

16
READS

1,488

5 authors, including:

Some of the authors of this publication are also working on these related projects:

SE Text2KnowledgeGraph View project

SEthesaurus View project

Zhenchang Xing

Nanyang Technological University

167 PUBLICATIONS 3,842 CITATIONS

SEE PROFILE

Jieshan Chen

Australian National University

7 PUBLICATIONS 286 CITATIONS

SEE PROFILE

Chunyang Chen

Monash University (Australia)

81 PUBLICATIONS 1,479 CITATIONS

SEE PROFILE

All content following this page was uploaded by Mulong Xie on 24 November 2020.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/346170544_UIED_a_hybrid_tool_for_GUI_element_detection?enrichId=rgreq-7251dc1fae01a96662104ecbf46be349-XXX&enrichSource=Y292ZXJQYWdlOzM0NjE3MDU0NDtBUzo5NjEyNzY0MDI0ODcyOTZAMTYwNjE5NzU2MjMyMQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/346170544_UIED_a_hybrid_tool_for_GUI_element_detection?enrichId=rgreq-7251dc1fae01a96662104ecbf46be349-XXX&enrichSource=Y292ZXJQYWdlOzM0NjE3MDU0NDtBUzo5NjEyNzY0MDI0ODcyOTZAMTYwNjE5NzU2MjMyMQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/SE-Text2KnowledgeGraph?enrichId=rgreq-7251dc1fae01a96662104ecbf46be349-XXX&enrichSource=Y292ZXJQYWdlOzM0NjE3MDU0NDtBUzo5NjEyNzY0MDI0ODcyOTZAMTYwNjE5NzU2MjMyMQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/SEthesaurus?enrichId=rgreq-7251dc1fae01a96662104ecbf46be349-XXX&enrichSource=Y292ZXJQYWdlOzM0NjE3MDU0NDtBUzo5NjEyNzY0MDI0ODcyOTZAMTYwNjE5NzU2MjMyMQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-7251dc1fae01a96662104ecbf46be349-XXX&enrichSource=Y292ZXJQYWdlOzM0NjE3MDU0NDtBUzo5NjEyNzY0MDI0ODcyOTZAMTYwNjE5NzU2MjMyMQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhenchang-Xing?enrichId=rgreq-7251dc1fae01a96662104ecbf46be349-XXX&enrichSource=Y292ZXJQYWdlOzM0NjE3MDU0NDtBUzo5NjEyNzY0MDI0ODcyOTZAMTYwNjE5NzU2MjMyMQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhenchang-Xing?enrichId=rgreq-7251dc1fae01a96662104ecbf46be349-XXX&enrichSource=Y292ZXJQYWdlOzM0NjE3MDU0NDtBUzo5NjEyNzY0MDI0ODcyOTZAMTYwNjE5NzU2MjMyMQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Nanyang_Technological_University?enrichId=rgreq-7251dc1fae01a96662104ecbf46be349-XXX&enrichSource=Y292ZXJQYWdlOzM0NjE3MDU0NDtBUzo5NjEyNzY0MDI0ODcyOTZAMTYwNjE5NzU2MjMyMQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhenchang-Xing?enrichId=rgreq-7251dc1fae01a96662104ecbf46be349-XXX&enrichSource=Y292ZXJQYWdlOzM0NjE3MDU0NDtBUzo5NjEyNzY0MDI0ODcyOTZAMTYwNjE5NzU2MjMyMQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jieshan-Chen?enrichId=rgreq-7251dc1fae01a96662104ecbf46be349-XXX&enrichSource=Y292ZXJQYWdlOzM0NjE3MDU0NDtBUzo5NjEyNzY0MDI0ODcyOTZAMTYwNjE5NzU2MjMyMQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jieshan-Chen?enrichId=rgreq-7251dc1fae01a96662104ecbf46be349-XXX&enrichSource=Y292ZXJQYWdlOzM0NjE3MDU0NDtBUzo5NjEyNzY0MDI0ODcyOTZAMTYwNjE5NzU2MjMyMQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Australian-National-University?enrichId=rgreq-7251dc1fae01a96662104ecbf46be349-XXX&enrichSource=Y292ZXJQYWdlOzM0NjE3MDU0NDtBUzo5NjEyNzY0MDI0ODcyOTZAMTYwNjE5NzU2MjMyMQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jieshan-Chen?enrichId=rgreq-7251dc1fae01a96662104ecbf46be349-XXX&enrichSource=Y292ZXJQYWdlOzM0NjE3MDU0NDtBUzo5NjEyNzY0MDI0ODcyOTZAMTYwNjE5NzU2MjMyMQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Chunyang-Chen-2?enrichId=rgreq-7251dc1fae01a96662104ecbf46be349-XXX&enrichSource=Y292ZXJQYWdlOzM0NjE3MDU0NDtBUzo5NjEyNzY0MDI0ODcyOTZAMTYwNjE5NzU2MjMyMQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Chunyang-Chen-2?enrichId=rgreq-7251dc1fae01a96662104ecbf46be349-XXX&enrichSource=Y292ZXJQYWdlOzM0NjE3MDU0NDtBUzo5NjEyNzY0MDI0ODcyOTZAMTYwNjE5NzU2MjMyMQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Monash_University_Australia?enrichId=rgreq-7251dc1fae01a96662104ecbf46be349-XXX&enrichSource=Y292ZXJQYWdlOzM0NjE3MDU0NDtBUzo5NjEyNzY0MDI0ODcyOTZAMTYwNjE5NzU2MjMyMQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Chunyang-Chen-2?enrichId=rgreq-7251dc1fae01a96662104ecbf46be349-XXX&enrichSource=Y292ZXJQYWdlOzM0NjE3MDU0NDtBUzo5NjEyNzY0MDI0ODcyOTZAMTYwNjE5NzU2MjMyMQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mulong-Xie?enrichId=rgreq-7251dc1fae01a96662104ecbf46be349-XXX&enrichSource=Y292ZXJQYWdlOzM0NjE3MDU0NDtBUzo5NjEyNzY0MDI0ODcyOTZAMTYwNjE5NzU2MjMyMQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

UIED: A Hybrid Tool for GUI Element Detection
Mulong Xie

Australian National University
Canberra, Australia

mulong.xie@anu.edu.au

Sidong Feng
Australian National University

Canberra, Australia
u6063820@anu.edu.au

Zhenchang Xing
Australian National University

Canberra, Australia
Zhenchang.Xing@anu.edu.au

Jieshan Chen
Australian National University

Canberra, Australia
Jieshan.Chen@anu.edu.au

Chunyang Chen
Monash University
Melbourne, Australia

Chunyang.Chen@monash.edu

ABSTRACT
Graphical User Interface (GUI) elements detection is critical for
many GUI automation and GUI testing tasks. Acquiring the accu-
rate positions and classes of GUI elements is also the very first step
to conduct GUI reverse engineering or perform GUI testing. In this
paper, we implement a User Iterface Element Detection (UIED), a
toolkit designed to provide user with a simple and easy-to-use plat-
form to achieve accurate GUI element detection. UIED integrates
multiple detection methods including old-fashioned computer vi-
sion (CV) approaches and deep learning models to handle diverse
and complicated GUI images. Besides, it equips with a novel cus-
tomized GUI element detection methods to produce state-of-the-art
detection results. Our tool enables the user to change and edit the
detection result in an interactive dashboard. Finally, it exports the
detected UI elements in the GUI image to design files that can be
further edited in popular UI design tools such as Sketch and Pho-
toshop. UIED is evaluated to be capable of accurate detection and
useful for downstream works.

Tool URL: http://uied.online
Github Link: https://github.com/MulongXie/UIED

CCS CONCEPTS
• Software and its engineering→ Software development tech-
niques; • Human-centered computing → Graphical user in-
terfaces.

KEYWORDS
Object Detection, User Interface, Deep Learning, Computer Vision

ACM Reference Format:
Mulong Xie, Sidong Feng, Zhenchang Xing, Jieshan Chen, and Chunyang
Chen. 2020. UIED: A Hybrid Tool for GUI Element Detection. In Proceed-
ings of the 28th ACM Joint European Software Engineering Conference and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7043-1/20/11. . . $15.00
https://doi.org/10.1145/3368089.3417940

Symposium on the Foundations of Software Engineering (ESEC/FSE ’20), No-
vember 8–13, 2020, Virtual Event, USA. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3368089.3417940

1 INTRODUCTION
GUI offers a visualized way to display information and to interact
with the software application through graphical UI elements, such
as widgets, images and texts. The development of GUI is critical
and laborious. It involves many repetitive and time-consuming
tasks, such as GUI code implementation and GUI testing. Plenty of
researches working around GUI automation [3, 17, 18, 31, 33] and
testing [21, 30] aim to facilitate the development process and relieve
pains of developers. The foundation of these tasks is to identify
GUI elements. There are two practices used to recognize elements
in GUI, instrumentation-based methods [2, 14, 19] and image-based
methods. Instrumentation-based approaches are based on intrusive
scripts and require accessibility of the back-end program [4, 12].
However, they cost plentiful effort to write scripts and hard to use
when the back-end code is unavailable [11, 16]. On the contrary,
image-based methods are more generic and less intrusive as it only
requires GUI image to detect GUI elements [18, 21, 32]. But, to
our best knowledge, there is no effective off-the-shelf GUI element
detection tool that user can use without any extra work. Therefore,
we developed an interactive web-based computer vision toolkit,
User Interface Element Detection (UIED), which provides quick
detection and easy management of GUI elements from GUI image.

UIED is a user-friendly web application where user can upload
their own GUI images and receive accurate GUI element detection
results. Detecting GUI elements from GUI image resembles object
detection task in natural scene. The process involves detecting
the presence and spatial location of certain target from natural
background in a digital image or video and then classifies the de-
tected object. Similarly, in our case of GUI element detection, the
purpose is to identify and extract GUI widgets, images and text
from the GUI image, which can either be a screenshot or design
drawing. We implement 5 latest state-of-the-art methods in UIED,
including 2 old-fashioned computer vision methods (Xianyu [32],
REMAUI [18]) and 3 deep learning methods (Faster-RCNN [23],
Yolo v3 [22], CenterNet [10]). However, GUI elements have large
in-class variance and high cross-class similarity, while GUI designs
are packed scene and close-by elements, and mix of heterogeneous
objects [7]. These characteristics make it inadequate to apply the
aforementioned methods straightforwardly to perform accurate

http://uied.online
https://github.com/MulongXie/UIED
https://doi.org/10.1145/3368089.3417940
https://doi.org/10.1145/3368089.3417940

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA M. Xie, S. Feng, Z. Xing, J. Chen , C. Chen.

detection. Therefore, we design a novel GUI-specific element de-
tection approach based on old-fashioned computer vision methods.
The methods can be divided into two parts, non-text elements and
text elements. First, for the non-text elements, we leverage and
innovate a set of image processing algorithms (e.g. flood-fill [29],
connected component labelling [24]) to extract them and then clas-
sify them using a ResNet50 classifier [13]. With the consideration
of GUI distinct boundary, shape, texture and layout, we adopt a
top-down coarse-to-fine detection strategy compared to bottom-up
edge/contour aggregation strategy in existing methods [18, 32]. Sec-
ond, for the text elements, we apply a state-of-the-art deep learning
scene text model EAST [34]. By synergy of our novel old-fashioned
processes and mature deep learning classifier, our method achieves
the state-of-the performance in GUI element detection.

UIED provides an interactive dashboard that allows user to edit
the result, such as dragging and dropping the element to change
location, adjusting element’s shape and size, removing elements,
etc. The tool collects all detected elements as a set of UI kits in
which they can be reused later. After a series of editing, UIED
allows user to export the result including the edited GUI and the
corresponding element information (e.g., position, size, class, etc.).
The exported results can be further developed in various works,
such as UI2CODE [17, 18, 33] applications that aim to automate GUI
development by generating corresponding code from GUI image
directly, and GUI testing [21, 30].

This paper makes the following contributions:

• We implement 5 existing detection approaches and our GUI-
specific detection method to acquire elements from GUI.

• We develop an interactive web application UIED that allows
user to manage GUI elements easily and produces reusable
detection results for further development.

• An informative investigation among professionals proving
the value of accurate GUI element detection approach.

2 APPLIED DETECTION METHODS
We applied both existing old-fashioned computer vision basedmeth-
ods and deep learning models retrained on mobile GUI images in
UIED. Old-fashioned computer vision based methods process im-
ages pixel by pixel without using machine learning techniques.
They are easy to deploy and adjust as no time-consuming training
required. We apply 2 existing GUI detection methods, Xianyu [32]
and REMAUI [18]. On the other hand, deep learning achieves re-
markable success in object detection research areas and is able to
predict results fast, we hence retrain 3 representative and state-of-
the-art approaches, Faster-RCNN [23] (two-stages), Yolo v3 [22]
(one-stage), CenterNet [10] (anchor free) and deploy them on UIED.
Note that to perform GUI element detection, we retrain the deep
learning models on a large mobile app screenshot dataset Rico [8].

REMAUI: It is a GUI reverse engineering work that converts
mobile GUI image into code, leveraging the off-the-shelf image
processing algorithms from OpenCV [27] library. For detecting
non-text GUI elements, it adopts a bottom-up strategy where it
first uses Canny edge [5] detection to acquire primitive shapes and
regions of image content (e.g, edge, contour) and then aggregate
them into objects progressively. It applies a simple optical character
recognition (OCR) tool Tesseract [25] to detect GUI text.

Xianyu: This is another GUI reverse engineering work devel-
oped by Alibaba to synthesis code from GUI images. It adopts a
similar idea as REMAUI. To improve the non-text element detection,
it leverages the flood fill algorithm [29] to identify the connected
regions and filters out the noise from the complex background,
combined with recursive horizontal/vertical slicing to obtain the
GUI elements Tesseract is also used to detect GUI text.

Faster-RCNN: It is a classic "two-stage" method which involves
two steps: detection and classification. It first generates a set of
region proposals in which likely to contain objects by a region
proposal network (RPN). RPN uses a set of user-defined anchor
boxes with different aspect ratios and computes an objectness score
to determine whether the box contains an object. It regresses the
anchor boxes to predict the object’s bounding box. Then it uses a
CNN-based image classifier to categorize the detected objects.

Yolo v3: Unlike Faster-RCNN, YOLO performs region regres-
sion and object classification at once. It determines the anchor box
aspect ratio automatically through clustering ground truth in the
training dataset. It generates a gridding feature map through CNN
and produces a set of bounding boxes for each grid. YOLO then
computes the objectness scores, regresses the box coordinates and
classifies the object in the bounding box at the same time.

CenterNet: Both Yolo and Faster-RCNN depends on anchor
boxes to detect targets, whose performance is affected by the ratio
aspect of these anchor boxes. They are also ineffective on objects
with various shapes that cannot fit into these boxes. To address
these limitations, CenterNet uses an anchor-free technique. It is a
one-stage detection model that predicts the position of the top-left
and bottom-right corners and the centre of an object.

3 OUR HYBRID APPROACH
With consideration of the characteristics of the GUI image, we pro-
pose a novel GUI specific element detection approach. Our method
divides the detection task into two part: non-text element detection
and text detection. We leverage old-fashioned computer vision algo-
rithms for non-text region extraction, and deep learning models to
perform classifications and text detection. The synergy reduces the
disturbance of text when detecting non-text elements, and achieves
the state-of-the-art performance for GUI element detection. Figure 1
shows the process of our approach.

Non-Text GUI Element Detection Unlike deep learning mod-
els that utilize statistical regression to predict approximate bound-
ing box, old-fashioned computer vision method can detect the po-
sition and shape of objects more accurately due to its pixel-level
image processing. But the existing old-fashioned methods usually
adopt a bottom-up strategy that aggregates the fine details (e.g.,
edge or contour) into objects. Such idea suffers noise of trivial im-
age content and tends to over-segment GUI elements, especially
when the GUI has a complex background. Therefore, we propose
a top-down coarse-to-fine approach based on old-fashioned com-
puter vision techniques for non-text GUI elements detection. The
process involves 3 steps. First, the approach detects layout blocks
through flood-filling algorithm [29] combined with the Sklansky’s
algorithm [26] to acquire the blocks’ outer boundaries and pro-
duces a block map, as shown in Figure 1 (c) where different colour
regions stand for potential different layout blocks. Then we use a

UIED: A Hybrid Tool for GUI Element Detection ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Figure 1: The overall process of our approach, where (a)
is the input GUI, (b) is the text detection result by EAST,
(c),(d),(e) is non-text elements detection and (f) is themerged
final result.

shape recognition algorithm [20] to select rectangular regions and
count them as GUI layout blocks. Second, the method generates
a binary map by a simple but efficient binarization method based
on the gradient map of the input GUI. If a pixel’s gradient with
neighbouring is small, it is regarded as a background point and
coloured as black, otherwise white. Then, we segment the binary
map into block segments based on previously detected blocks, as
shown in Figure 1(d). In each block binary map, we detect GUI

elements by connected component labelling algorithm [24] and use
Sklansky’s algorithm again to determine the elements’ boundary.
Third, we train a ResNet 50 [13] classifier on 90,000 GUI element
instances with 15 categories to classify the extracted elements.

GUIText ElementDetectionWedetermine GUI text as a scene
text and apply the state-of-the-art deep learning scene test detector
EAST [34] to detect text in the GUI image. It first feeds the input
image into a feature pyramid network [15] and then computes six
values for each point based on the final feature map to detect text
(objectness score, top/left/bottom/right offsets and rotation angle).

4 WEB IMPLEMENTATION
UIED toolkit is a web application that provides the user with a
convenient tool to detect and manage GUI elements in GUI images.
It can export the detection results that can be further used in other
applications such as GUI testing and GUI automation. In UIED, we
integrate all of the previously mentioned approaches, including
old-fashioned computer vision and deep learning methods. This
tool also offers an interactive dashboard where the user can edit
and manage the detection result. We implement Xianyu [32] and
our own approach in OpenCV [27] and customize deep learning
models in Tensorflow [1] and Pytorch [28]. There are two major
parts of the UIED: the landing page and the dashboard.

Landing Page Figure 2(a) shows an illustration of our landing
page, which displays the basic information and usage of UIED. Users
are able to input a GUI image to be processed. They can either
select example GUIs we provide to check the effect of detection and
experience the basic usage of the dashboard or upload their own
GUI to detect GUI elements. Furthermore, for our method, we allow
the user to change some key parameters by slide bars to adjust
the detection result. To facilitate image transmission in the server,
we adopt a serializing structured data method, Google’s Protocol
Buffers method [9], which encodes the image into a buffer bytes.

Dashboard UIED disassembles the input GUI into draggable
GUI elements according to the detection result and displays them
on the dashboard (in Figure 2(b)). In the dashboard, we implemented
several functionalities to provide a more user-friendly interaction
experience, including:

Drag & Drop: The user can adjust the position of GUI element to
manually correct the detection result through dragging the element
and dropping to somewhere else.

Attributes Management: When clicking a GUI element, the user
can easily access the attributes of the element (e.g., type, width,
height, left, top). We provide users with the ability to quickly edit
the element, such as applying a new size and precise position, delete
existing ones and withdrawing changes.

UI Element Kit: UI kit is the most efficient and profitable way to
build a rapid GUI [6]. Therefore, we store all the detected elements
in the dataset for the user to reuse. If the user further processes the
input GUI in another method, the new GUI elements will also be
added to the UI kits.

Detection Result Export After adjustment, the user can export
the GUI element information in the compounded image, including
position, size and class of elements. This information will be stored
in a JSON file and is easy to use in further applications.

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA M. Xie, S. Feng, Z. Xing, J. Chen , C. Chen.

(a) Landing Page (b) Dashboard

Figure 2: Illustration of our UIED web application.

5 EVALUATION
The goal of our study is to evaluate the usefulness of UIED in terms
of (i) its effectiveness in detecting elements and (ii) the usability of
downstream tasks.

Effectiveness Measurement: Regarding the effectiveness of
element detection in multiple approaches, we conduct experiments
on 5k Android mobile GUIs collected from Rico [8]. This part is also
published in our previous work [7] where we present a more de-
tailed analysis. The main evaluation metrics we used is the F1-score
which is interpreted as a weighted average of the precision and re-
call. Note that the measurements are evaluated on IoU > 0.9, where
the IoU is the intersection area over union area of the detected
bounding box and the ground-truth box. We further measure the
cost of time to show the efficiency of each approach. Table 1 shows
the performance of all approaches. The existing old-fashioned detec-
tion methods perform poorly (REMAUI F1=0.183, Xianyu F1=0.106)
and the deep learningmodels gain better performance (Faster RCNN
F1=0.271, YOLOv3 F1=0.249, CenterNet F1=0.282). Our approach
achieves state-of-the-art performance (F1=0.524). Note that part
of the reason why the score is not as high as expected is that the
dataset itself is not perfectly precise. Combining the multiple mod-
els and the ability to manual adjustment, UIED is able to produce
more accurate detection result as shown in Figure 2(a)

UsabilityMeasurement: Regarding the user experience of UIED,
we create a survey on 10 professional developers and researchers
who come from GUI related work. They are asked to use UIED and
questioned about the tool’s usefulness for their work, as well as the
future potential and extension of the tool.

Among those professionals, three of them are working on GUI
reverse engineering research that synthesizes GUI code from GUI
image (UI2Code). All of them indicated the significance of accurate
GUI element detection for generating high-quality code while they
have no off-the-shelf detection method to use. Similar situation in
the other four participants who are researching robotic GUI auto-
matic testing. They want to apply the robot arm to simulate human
tester to test the mobile apps without writing any testing script,
which means the visual information is critical. These researchers
stated that although the GUI element detection producing exact
element information to direct the robot tester is vital, there is no
mature and accurate existing domain-specific method. And they
believed an easy-to-use tool like UIEDwould be "more than helpful".

Table 1: Results of object detection (IoU > 0.9) and runtime
efficiency

Approach F1-score Avg Time
YOLOv3 0.249 0.22s
Faster-RCNN 0.271 0.38s
CenterNet 0.282 0.34s
Xianyu 0.324 1.2s
REMAUI 0.357 5.3s
UIED 0.524 4.8s

We also surveyed two web developers. They agreed that a web ap-
plication that recognizes the GUI elements in their design drawing
and allows them to edit the image is "interesting and helpful". They
were also very interested in the further potential of UIED which
would support online UI2CODE function in future and think such
a tool can be practical assistance in web development.

6 CONCLUSION AND FUTUREWORK
In this demo, we present UIED, a GUI element detection toolkit
which supports two old-fashioned computer vision approaches
and three commonly used deep learning approaches. Furthermore,
based on the distinct characteristics of GUI, we implement a novel
approach that combines best practices for non-text GUI element
and GUI text detection. We embed our approach in the UIED with
the option to adjust the key parameters to best adapt to the given
GUI image UIED also provides users with an interactive and respon-
sive dashboard with various useful functionalities to optimize the
detection result, such as drag and drop, size and class editor. Finally,
it can export the edited GUI image and corresponding GUI element
information for further usage. UIED was evaluated in aspects of
detection accuracy and tool usefulness. The evaluation suggests
that UIED is a good starting point of software engineering in GUI
tasks.

For future work, UIED has significant potential to be expanded
with other applications. For instance, our ongoing UI2CODE project
that aims to synthesis code from a given GUI image will be added
to the tool once mature. With code generation, this tool will be
dramatically helpful in GUI development in the way that the de-
signer can pass their GUI design to our tool and get the usable
code efficiently. Also, we are planning to utilize the UIED as the
detection part for automatic GUI testing, which is expected to be
added as an extension in UIED in the future.

UIED: A Hybrid Tool for GUI Element Detection ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

REFERENCES
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,
Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
https://www.tensorflow.org/ Software available from tensorflow.org.

[2] Lingfeng Bao, Jing Li, Zhenchang Xing, Xinyu Wang, and Bo Zhou. 2015. scvRip-
per: video scraping tool for modeling developers’ behavior using interaction data.
In 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering,
Vol. 2. IEEE, 673–676.

[3] Carlos Bernal-Cardenas, Nathan Cooper, Kevin Moran, Oscar Chaparro, Andrian
Marcus, and Denys Poshyvanyk. 2020. Translating Video Recordings of Mo-
bile App Usages into Replayable Scenarios. In 42nd International Conference on
Software Engineering (ICSE ’20). ACM, New York, NY.

[4] Karl Bridge and Michael Satran. 2018. Windows Accessibility API overview. Re-
trieved March 2, 2020 from https://docs.microsoft.com/en-us/windows/win32/
winauto/windows-automation-api-portal

[5] J. Canny. 1986. A Computational Approach to Edge Detection. IEEE Transactions
on Pattern Analysis and Machine Intelligence PAMI-8, 6 (Nov 1986), 679–698.
https://doi.org/10.1109/TPAMI.1986.4767851

[6] Chunyang Chen, Sidong Feng, Zhenchang Xing, Linda Liu, Shengdong Zhao,
and Jinshui Wang. 2019. Gallery DC: Design Search and Knowledge Discovery
through Auto-created GUI Component Gallery. Proceedings of the ACM on
Human-Computer Interaction 3, CSCW (2019), 1–22.

[7] Jieshan Chen, Mulong Xie, Zhenchang Xing, Chunyang Chen, Xiwei Xu, Liming
Zhu, and Guoqiang Li. 2020. Object Detection for Graphical User Interface: Old
Fashioned or Deep Learning or a Combination? arXiv:2008.05132 [cs.CV]

[8] Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hibschman, Daniel Afergan,
Yang Li, Jeffrey Nichols, and Ranjitha Kumar. 2017. Rico: A mobile app dataset
for building data-driven design applications. In Proceedings of the 30th Annual
ACM Symposium on User Interface Software and Technology. 845–854.

[9] Google Developers. 2020. Protocol Buffers | Google Developers.
https://developers.google.com/protocol-buffers

[10] Kaiwen Duan, Song Bai, Lingxi Xie, Honggang Qi, Qingming Huang, and Qi
Tian. 2019. Centernet: Keypoint triplets for object detection. In Proceedings of
the IEEE International Conference on Computer Vision. 6569–6578.

[11] Google. 2019. UI Automator. Retrieved March 2, 2020 from https://developer.
android.com/training/testing/ui-automator

[12] Google. 2020. Build more accessible apps. Retrieved March 2, 2020 from https:
//developer.android.com/guide/topics/ui/accessibility

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[14] Feng Lin, Chen Song, Xiaowei Xu, Lora Cavuoto, and Wenyao Xu. 2016. Sensing
from the bottom: Smart insole enabled patient handling activity recognition
through manifold learning. In 2016 IEEE First International Conference on Con-
nected Health: Applications, Systems and Engineering Technologies (CHASE). IEEE,
254–263.

[15] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and
Serge Belongie. 2017. Feature pyramid networks for object detection. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition. 2117–2125.

[16] Microsoft. 2016. Introducing Spy++. Retrieved March 2, 2020
from https://docs.microsoft.com/en-us/visualstudio/debugger/introducing-spy-
increment?view=vs-2019

[17] Kevin Moran, Boyang Li, Carlos Bernal-Cárdenas, Dan Jelf, and Denys Poshy-
vanyk. 2018. Automated reporting of GUI design violations for mobile apps. In
Proceedings of the 40th International Conference on Software Engineering. 165–175.

[18] Tuan Anh Nguyen and Christoph Csallner. 2015. Reverse engineering mobile
application user interfaces with remaui (t). In 2015 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 248–259.

[19] Suporn Pongnumkul, Mira Dontcheva, Wilmot Li, Jue Wang, Lubomir Bourdev,
Shai Avidan, and Michael F Cohen. 2011. Pause-and-play: automatically linking
screencast video tutorials with applications. In Proceedings of the 24th annual
ACM symposium on User interface software and technology. 135–144.

[20] Dilip K. Prasad, Maylor K.H. Leung, Chai Quek, and Siu-Yeung Cho. 2012. A
novel framework for making dominant point detection methods non-parametric.
Image and Vision Computing 30, 11 (2012), 843 – 859. https://doi.org/10.1016/j.
imavis.2012.06.010

[21] Ju Qian, Zhengyu Shang, Shuoyan Yan, Yan Wang, and Lin Chen. 2020. RoScript:
A Visual Script Driven Truly Non-Intrusive Robotic Testing System for Touch
Screen Applications. In 42nd International Conference on Software Engineering
(ICSE ’20). ACM, New York, NY.

[22] Joseph Redmon and Ali Farhadi. 2018. Yolov3: An incremental improvement.
arXiv preprint arXiv:1804.02767 (2018).

[23] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster r-cnn:
Towards real-time object detection with region proposal networks. In Advances
in neural information processing systems. 91–99.

[24] H. Samet and M. Tamminen. 1988. Efficient component labeling of images of
arbitrary dimension represented by linear bintrees. IEEE Transactions on Pattern
Analysis and Machine Intelligence 10, 4 (1988), 579–586. https://doi.org/10.1109/
34.3918

[25] Ray Smith. 2007. An overview of the Tesseract OCR engine. In Ninth International
Conference on Document Analysis and Recognition (ICDAR 2007), Vol. 2. IEEE, 629–
633.

[26] Satoshi Suzuki and KeiichiA be. 1985. Topological structural analysis of digi-
tized binary images by border following. Computer Vision, Graphics, and Image
Processing 30, 1 (1985), 32 – 46. https://doi.org/10.1016/0734-189X(85)90016-7

[27] OpenCV team. 2020. https://opencv.org/
[28] Pytorch Team. 2020. https://pytorch.org/
[29] Shane Torbert. 2016. Applied computer science. Springer.
[30] Thomas D White, Gordon Fraser, and Guy J Brown. 2019. Improving random

GUI testing with image-based widget detection. In Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis. 307–317.

[31] Tom Yeh, Tsung-Hsiang Chang, and Robert C Miller. 2009. Sikuli: using GUI
screenshots for search and automation. In Proceedings of the 22nd annual ACM
symposium on User interface software and technology. 183–192.

[32] Chen Yongxin, Zhang Tonghui, and Chen Jie. 2019. UI2code: How
to Fine-tune Background and Foreground Analysis. Retrieved Feb 23,
2020 from https://laptrinhx.com/ui2code-how-to-fine-tune-background-and-
foreground-analysis-2293652041/

[33] Dehai Zhao, Zhenchang Xing, Chunyang Chen, Xiwei Xu, Liming Zhu, Guoqiang
Li, and Jinshui Wang. 2020. Seenomaly: Vision-Based Linting of GUI Animation
Effects Against Design-Don’t Guidelines. In 42nd International Conference on
Software Engineering (ICSE ’20). ACM, New York, NY, 12 pages. https://doi.org/
10.1145/3377811.3380411

[34] Xinyu Zhou, Cong Yao, He Wen, Yuzhi Wang, Shuchang Zhou, Weiran He,
and Jiajun Liang. 2017. EAST: an efficient and accurate scene text detector. In
Proceedings of the IEEE conference on Computer Vision and Pattern Recognition.
5551–5560.

View publication statsView publication stats

https://www.tensorflow.org/
https://docs.microsoft.com/en-us/windows/win32/winauto/windows-automation-api-portal
https://docs.microsoft.com/en-us/windows/win32/winauto/windows-automation-api-portal
https://doi.org/10.1109/TPAMI.1986.4767851
https://arxiv.org/abs/2008.05132
https://developers.google.com/protocol-buffers
https://developer.android.com/training/testing/ui-automator
https://developer.android.com/training/testing/ui-automator
https://developer.android.com/guide/topics/ui/accessibility
https://developer.android.com/guide/topics/ui/accessibility
https://docs.microsoft.com/en-us/visualstudio/debugger/introducing-spy-increment?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/debugger/introducing-spy-increment?view=vs-2019
https://doi.org/10.1016/j.imavis.2012.06.010
https://doi.org/10.1016/j.imavis.2012.06.010
https://doi.org/10.1109/34.3918
https://doi.org/10.1109/34.3918
https://doi.org/10.1016/0734-189X(85)90016-7
https://opencv.org/
https://pytorch.org/
https://laptrinhx.com/ui2code-how-to-fine-tune-background-and-foreground-analysis-2293652041/
https://laptrinhx.com/ui2code-how-to-fine-tune-background-and-foreground-analysis-2293652041/
https://doi.org/10.1145/3377811.3380411
https://doi.org/10.1145/3377811.3380411
https://www.researchgate.net/publication/346170544

	Abstract
	1 Introduction
	2 Applied Detection Methods
	3 Our Hybrid Approach
	4 WEB IMPLEMENTATION
	5 Evaluation
	6 Conclusion and Future Work
	References

